Autonomous Sprinkler System with Object Avoidance

Group 4:

Yuri Shnirman

Brian Tai

Jared Frank

Overview

- Recognition of the Need
- Functions and Features
- Preliminary Research
- Sensor and Actuator Selection
- Mechanical Design
- Circuit Design
- Program
- Prototype
- Safety
- Automatic/Manual Control Modes
- Materials and Cost
- Limitations and Future Work
- Conclusion

Recognition of the Need

- Most home sprinklers:
 - Are time-controlled
 - Do not contain sensors
- Sensors are sold separately
 - Costly and impractical
 - Proprietary equipment

Recognition of the Need

- A conventional lawn sprinkler will activate:
 - Though it has rained
 - Though you are standing in front of it
 - No matter the temperature or the brightness of the day
- Will not deactivate until its timer has run up
 - Open-loop system

Functions and Features Requirements

- An autonomous home sprinkler system that must:
 - Check weather to determine if sprinkler should activate
 - Time how long the sprinkler is activated
 - Detect objects
 - Control flow rate to avoid these objects
 - Cover an 11ft radius (22ft diameter)
 - Provide a mode to manually override flow rate control

Preliminary Research

Temperature

- extreme high temperatures → water can burn foliage
- extreme cold temperatures → water freezes → will not absorb in soil and cause frostbite

Time of day

- early morning: less water evaporates → soil soaks well
- − midday: water evaporates too much →
- late afternoon: early enough for plants to dry
- late night → very little water evaporation, cold temperatures can cause water diseases

Preliminary Research

- Amount of water
 - One inch of water (623 gal/1000 sqft) will soak 6-8 inches of soil
 - Too much water will cause run-off
 - drowns the plants
 - If there was rain, watering is not necessary or less water required (Depends on amount of rain)
 - Must dry between watering
 - otherwise diseases, insects, drowned root damage, etc.

Preliminary Research

- Light
 - hot, sunny day → large amount of evaporation
 - Cloudy day → less water evaporation → less watering required
- Time Elapsed
 - (SquareftArea x .62)/GPM = minutes to water

Sensor and Actuator Selection

- Sensors
 - Photoresistor

[Temp. Sensor]

- DS1620 Temperature sensor
- Soil moisture sensor
- PING))) Range Finder
- Pressure sensor
- Pushbuttons
- Potentiometer

[Moisture Sensor]

[Photoresistor]

Sensor and Actuator Selection

- Sensors
 - Photoresistor
 - DS1620 Temperature sensor
 - Soil moisture sensor
 - PING))) Range Finder
 - Pressure sensor
 - Pushbuttons
 - Potentiometer

[Ping))) Distance Sensor]

[Pressure Sensor]

Mechanical Design

- Two Subassemblies constructed:
 - First → large project box assembly
 - Second → sprinkler head / small project box assembly

- Large Project Box:
 - Contains circuit board and attached motor-valve
 - LCD and pushbuttons mounted for user interface

Mechanical Design

- Small Project Box:
 - Contains range finders
 - Pressure and soil moisture sensors plug in
- Motor:
 - must alter flow rate quickly
 - must be powerful enough to drive valve
- 2 PING))) Distance sensors instead of 1 with servo
 - Less complex, fixed orientation, must see both sides of water jet

Mechanical Design: Sprinkler Head

[Sprinkler Head + Spike]

[Sprinkler Head]

Sprinkler Pressure Data

Sprinkler Pressure Data (Cont.)

Sprinkler Pressure Data (Cont.)

Circuit Design

- Use of PCB instead of breadboard
 - Increases reliability
 - Decreases space and # of components
- Cadsoft Eagle used to design circuit
- Main Features:
 - Parallel RC circuits for most sensors
 - 555 Timer Astable Multivibrator circuit
 - Temperature sensor circuit
 - Half bridge using dual power supply and dual MOSFETs

Circuit Design

Program

- Menu allows selection between Auto/Manual control
- Main Features:

Auto:

- RCTime command obtains analog sensor inputs
- 555 Timer fine-tuned to output 0.5Hz → timing
- IF...THEN statement nesting for weather checking
- Continuous monitoring of ultrasound while active

Prototype

Back/Inside (Control Unit)

Front (Control Unit)

Safety

- Safety resistors used in circuitry
- Electronics contained in container
- DC motor circuit electrically isolated from BS2 circuit and has series RC transient suppressor
- Kill switch for immediate user termination
- Warnings during manual mode

Automatic Control

- Motor Control
 - Sprinkler avoids objects that are not meant to be sprayed
 - PING)))
 - Pressure sensor used to locate motor position
- Moisture sensor, Light sensor
 - Finds water content in soil to decide whether to water
- Light sensor
 - Determines (Night/Day) to decide whether to water
- Temperature sensor
 - Determines air temperature to decide whether to water

User Interface / Manual Control

LCD screen and four pushbuttons

- Menu
 - Welcome user and introduce product
 - Provide simple monitoring and motor control
 - User can request sensor data

Materials & Cost

	一下的多种构制器	Item Cost		
Part#	Item	(\$)	Quantity	Total Cost (\$)
01	Basic Stamp 2 Module	49.00	1	49.00
02	Sprinkler Head	4.99	1	4.99
03	Hose	11.00	1	11.00
04	Project Box (big)	4.99	1	4.99
05	Project Box (small)	2.99	2	5.98
06	LCD	29.99	1	29.99
07	Pushbuttons	0.99	4	3.96
08	Pressure Sensor	19.99	1	19.99
09	Photoresistor	1.99	1	1.99
10	Moisture Sensor	0.99	1	0.99
11	Temperature Sensor	6.99	1	6.99
12	Range Finder	29.99	2	59.98
13	Killswitch	0.99	1	0.99
14	555 Timer	1.99	1	1.99
15	Resistors	0.15	10	1.50
16	Capacitors	0.20	* F 5	1.00
17	Jumper Wire	0.05	20	1.00
18	PCB	2.00	1	2.00
19	LED	0.50	2	1.00
20	Additional Accessories			15.00

Limitations and Future Work

- Cost
- Distance sensor
 - Increase distance sensing range
- Weather sensing
 - Improve weather sensing precision
- Better motor control
- More interactive menu
- External EEPROM for weather data storage
- Security Capabilities
- Sprinkler networking

Conclusion

- Project scope was made too large
 - Unnecessarily complicated design decisions
- Printed circuit too time consuming
 - Despite its advantages → took days to make

